Brain regional pharmacokinetics of p-aminosalicylic acid and its N-acetylated metabolite: effectiveness in chelating brain manganese.
نویسندگان
چکیده
para-aminosalicylic acid (PAS; 4-amino-2-hydroxybenzoic acid), an antituberculosis drug in use since the 1950s, has recently been suggested to be an effective agent for treatment of manganese-induced parkinsonian disorders. However, the neuropharmacokinetics of PAS and its metabolite N-acetyl-para-aminosalicylic acid (AcPAS; N-acetyl-4-amino-2-hydroxybenzoic acid) are unknown. This study was designed to investigate the pharmacokinetics of PAS and its distribution in brain to help better design the dosing regimen for clinical trials. Male Sprague-Dawley rats received single femoral artery injections of PAS (200 mg/kg). Plasma, cerebrospinal fluid, and brain tissues were collected, and PAS and AcPAS concentrations were quantified by high-performance liquid chromatography. After administration, the concentrations of PAS declined rapidly in plasma with an elimination t(½) of 34 min; the metabolite AcPAS was detected in plasma and eliminated with a t(½) of 147 min. PAS and AcPAS were detected in brain tissues; AcPAS had a much higher tissue concentration and a longer t(½) than the parent PAS in most tissues examined. Although both were present in blood or tissues as free, unbound molecules, AcPAS appeared to have a higher tissue affinity than PAS. Taken together, our results suggest that a dosing regimen with continuous intravenous infusion of PAS is necessary to achieve therapeutic levels in targeted brain regions. Furthermore, PAS and AcPAS seem to be effective in reducing manganese levels in brain.
منابع مشابه
HPLC analysis of para-aminosalicylic acid and its metabolite in plasma, cerebrospinal fluid and brain tissues.
Para-aminosalicylic acid (PAS), an approved drug for treatment of tuberculosis, is a promising therapeutic agent for treatment of manganese (Mn)-induced parkinsonian syndromes. Lack of a quantifying method, however, has hindered the clinical evaluation of its efficacy and there upon new drug development. This study was aimed at developing a simple and effective method to quantify PAS and its ma...
متن کاملChelation therapy of manganese intoxication with para-aminosalicylic acid (PAS) in Sprague-Dawley rats.
Para-aminosalicylic acid (PAS), an FDA-approved anti-tuberculosis drug, has been used successfully in the treatment of severe manganese (Mn)-induced Parkinsonism in humans [Jiang Y-M, Mo X-A, Du FQ, Fu X, Zhu X-Y, Gao H-Y, et al. Effective treatment of manganese-induced occupational Parkinsonism with p-aminosalicylic acid: a case of 17-year follow-up study. J Occup Environ Med 2006;48:644-9]. T...
متن کاملPreparation of a Major Metabolite of Iguratimod and Simultaneous Assay of Iguratimod and Its Metabolite by HPLC in Rat Plasma
Iguratimod is a new synthetic disease-modifying antirheumatic drug intended to treat patients with rheumatoid arthritis. A new method using recombinant human CYP450s yeast cells containing c-DNA expressed P450s was applied to identify the metabolic pathways of iguratimod and to prepare its metabolite. The metabolite was isolated, and its structure was identified by quadrupole time-of-flight-mas...
متن کاملPreparation of a Major Metabolite of Iguratimod and Simultaneous Assay of Iguratimod and Its Metabolite by HPLC in Rat Plasma
Iguratimod is a new synthetic disease-modifying antirheumatic drug intended to treat patients with rheumatoid arthritis. A new method using recombinant human CYP450s yeast cells containing c-DNA expressed P450s was applied to identify the metabolic pathways of iguratimod and to prepare its metabolite. The metabolite was isolated, and its structure was identified by quadrupole time-of-flight-mas...
متن کاملEffect of various blood glucose levels on regional FDG uptake in the brain
Objective(s): Studies have mainly assessed the effect of hyperglycemia on18F-fluorodeoxyglucose (FDG) uptake in the brain. In this study, we assessed the FDG uptake of the brain not only in normo- and hyperglycemia but also in hypoglycemia to compare the effect of various blood glucose levels on regional FDG uptake in the brain. Methods: </...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 39 10 شماره
صفحات -
تاریخ انتشار 2011